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Rotating billiards 
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Abstract. The motion of a classical particle within a billiard which rotates uniformly in 
the counterclockwise sense around its centre is studied. In the case of an elliptical boundary 
the counterclockwise motion shows a notable stability while the clockwise motion is to a 
large extent chaotic when the motion along the boundary in the clockwise sense is not 
possible. The organisation of phase space for the rotating billiard and the billiard in a 
constant magnetic field studied by Robnik and Berry is similar for weak fields but clearly 
different for strong fields where the variable curvature for the rotating billiard is manifested. 
For strong inertial forces the rotating stadium and the rotating ellipse behave in a similar 
manner. 

1. Introduction 

The aim of this article is to provide a description of the classical phase space associated 
with trajectories of a free particle inside a billiard which rotates with constant angular 
frequency around an axis perpendicular to the billiard plane and through its centre. 
The billiards are considered as some of the simplest ‘laboratories’ which exhibit the 
richness of the phase space of classical mechanics and for which the connection 
between classical and quantum mechanics can be studied. Several mathematical results 
were already derived by Birkhoff (1927) and recent reviews of the subject have been 
given by Sinai (1976) and Berry (1981a). In the last ten years many numerical 
experiments have been published, by for example, Benettin and Strelcyn (1978), Berry 
(1981b), McDonald and Kaufman (1979, 1988), Henon and Wisdom (1983), Robnik 
(1983,1984), Helier (1984) and Christoff el and Brumer (1986). A new class of billiards 
was introduced recently by Robnik and Berry (1985), namely billiards in constant 
magnetic fields. These systems with broken time-reversal symmetry belong to the 
universality class (Berry 1987) for which the statistics of the corresponding quantal 
eigenenergies is fitted by the ensemble of random complex Hermitian matrices. For 
an example see the Aharonov-Bohm billiard studied by Berry and Robnik (1986a, b). 

The rotating billiard is not time-reversal invariant and has much in common with 
the billiard in a constant magnetic field. The former is the two-dimensional classical 
counterpart of the cranking model of Inglis (1956) which nuclear physicists use to 
analyse the nucleonic response to the rotation of the nuclear field (Bohr and Mottelson 
1975) while the latter mimic the behaviour of electrons in a magnetic field and, for 
example, the connection between chaos and diamagnetism can be investigated 
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(Nakamura and Thomas 1988). Since the Laplace force introduces a constant curvature 
for a constant magnetic field while the inertial forces in the rotating case generate 
several regimes of curvature, both systems have a value in their own right. Robnik 
and Berry (1985) showed the existence of a regime of locally integrable adiabatic 
skipping motion and a regime of chaotic flyaway orbits. The former event was proved 
mathematically by Lazutkin (1973) for a free particle in a plane convex domain with 
a sufficiently smooth boundary. The phase space of the billiard in a Coriolis-centrifugal 
field contains these two regimes but its organisation is different from the magnetic 
field case when then the fields are strong. 

Fairlie and Siegwart (1988) were the first to consider a rotating billiard. They chose 
a circular table rotating uniformly about a point located on the edge and showed that 
the phase portrait of this system contains all the features of chaotic systems. Choosing 
instead an ellipse or a stadium rotating around its centre is a natural extension of 
previous studies, see Keller and Rubinow (1960) and Arvieu and Ayant (1987a, b) for 
the ellipse. The discussion by Fairlie and Siegwart will also be somewhat extended in 
our paper. The ellipse is finally the simplest possible model that must be solved before 
considering the rotation of a more realistic three-dimensional potential. Simple results 
on this latter system have already been derived by Bohr and Mottelson (1980) but the 
full problem has not yet been treated. In 9 2 the motion of a free particle in a rotating 
system (no boundary) is examined. The boundary is taken into account in 9 3. Some 
of the most important trajectories in a rotating ellipse are analysed in 0 4 which 
facilitates the interpretation of the numerical experiments presented in 0 5 for the 
ellipse and the stadium. 

2. Trajectories in a rotating system of a free particle 

Let us examine the different types of trajectories of a free particle which are obtained 
in a two-dimensional system rotating in the counterclockwise sense with a constant 
rotational frequency, w. At t = 0 the rotating axes are assumed to coincide with the 
fixed axes OX and OY and the particle is assumed to be located at po = (xo, yo) with 
a velocity V in the laboratory system such that po= lpol is the closest distance to the 
centre of rotation. Thus V = (- V , y o / p o ,  VLxo/po)  where both positive and negative 
values of V, will be considered throughout the paper. The coordinates U and v in the 
rotating system are then given by 

With help of the expressions for the inertial forces and the scalar product between them 

K e n t  = mw2p 

 cor * Fcent  =2m2w3(vLpn-wp2)  

we can distinguish between three different types of trajectories shown in figure 1. 
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Figure 1. Parts of four trajectories in a rotating frame of a free particle. The centre of the 
rotation is marked with a cross in each case and the rotation is in the counterclockwise 
sense. The trajectories are denoted by the ratios V J p , w  = -0.1, 0.75, 1.0 and 1.4, where 
V ,  is the velocity in the laboratory (fixed) frame, p o  is the minimum distance to the centre 
of rotation and w is the angular frequency. A negative value of V ,  means that the direction 
of the angular momentum vector in the laboratory system is opposite to the direction of 
the angular frequency vector. Except for V,/pow = -0.1 only a part of the trajectory close 
to p o  is shown. For V,/pow < 0.5 the Coriolis force and the centrifugal forces act in the 
opposite sense and the Coriolis force is stronger than the component of the centrifugal 
force perpendicular to the velocity vector in the rotating frame. For smaller velocities in 
the clockwise direction, 0.5 < V L / p o w  < 1 the inertial forces still act in the opposite sense 
but the centrifugal force can now dominate in the region where p / p o <  3/&. If V,/pow = 1 
a branch point at the minimum distance is developed and for even larger values a loop 
exists. Within this loop the Coriolis force and the centrifugal force can act in the same 
direction. 

( i)  F,,, - < 0 and the curvature of the trajectory keeps a constant sign. This 
happens, because of the dominance of the Coriolis force, if V L / p o w  < 0.5. The radius 
of curvature R, of the trajectory at p = po is then always greater than po except for 
V,  = 0 where naturally R, = po (a circle in the clockwise sense); see figure 2. 

"L /POW 

Figure 2. The radius of curvature of the trajectory, R , ,  at the minimum distance to the 
centre of rotation, p o ,  in units of p o  as function of VL/pow.  For VL/pow =O.S the two 
inertial forces cancel each other at p o .  
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(ii) Fco, - F,,,,<O and the centrifugal force can change the sign of the curvature 
in a small part of the trajectory. This occurs if 0.5 < VL/pow < 1. The change of 
curvature is produced whenever p < p0[3( VL/pow) -2( V , / ~ , W ) ~ ] " ~ .  If VL = pow there 
is a branch point at the minimum distance to the centre of rotation and R, = 0. 

(iii) Fco, F,,,, > 0. The inertial forces act in the same direction in a certain region 
and a loop exists. This occurs if V,/p,w > 1 in the region where p < po( V,/p,o) 1'2. 

The radius of curvature at p = po is given by 

In the particular case when the particle goes through the origin (po = 0) it is straightfor- 
ward to show that the origin is always located on a loop which is present for any value 
of v, f 0. 

3. Motion within a rotating boundary 

Consider a particle moving in two dimensions within a non-circular boundary and 
where the only forces acting on it are the inertial forces in equations (2). The boundary 
will in the following be characterised by the largest and smallest distance from the 
centre of rotation to the boundary, denoted R, and R ,  respectively, and the aspect 
ratio p = R J R , .  At the boundary the particle is supposed to be perfectly reflected. 
For a generic orbit the angular momentum is not conserved after a collision with the 
boundary. However, the Hamiltonian in the rotating system, H '  (Landau and Lifshitz 
1976) 

H ' =  H - 01, (4) 

where H and 1, denote the Hamiltonian and the angular momentum in the laboratory 
frame, respectively, provides a well known constant of motion. The term -wl, generates 
the two inertial forces. The constant value of H' ,  in the following denoted e,, can in 
the laboratory system be expressed as 

( 5 )  

(6) 
where V, denotes the magnitude of the velocity of the particle in the rotating system. 
For a given boundary the trajectories depend only on the ratio VL/w and it is therefore 
convenient to introduce the dimensionless parameter 

1 2  e, = ,mVL - wl, = f m v :  - mwp, V ,  

e, = tm(  V: - w 2 p 2 )  

or in the rotating system 

On each curve in the ( w ,  e,) plane with 7 constant the topologies of the PoincarC 
surfaces of section for a given boundary are the same (see figure 3 and 0 5 ) .  Since 
p d R ,  equation ( 7 )  gives that 7 2 -0.5. In the domain where 7 < 0 the orbit is confined 
within the boundary and a circle with radius p, ,  where p, = R,J-Tr).  For 7 = -0.5/p2 
we have p< = R , .  This circle, which always defines a forbidden region, does not touch 
the boundary for -0 .5/p2< 7 < O .  If 7 > 0 no circle of confinement exists and the 
motion is possible everywhere within the boundary. The value t) = 0 for which the 
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Figure 3. The constant of motion in the rotating frame, e,, as a function of W .  Some curves 
with a constant value of the dimensionless quantity 7 = e , /mR:w2 are shown. The chosen 
units are appropriate for a rotating nucleus. The mass of the particle, m, is chosen as the 
proton mass and the largest distance from the centre of rotation to the boundary, R ,  , is 
typical for an ellisoidal shape of a nucleus with mass number around 150 and p = R, /  R ,  = 2 
( R ,  is the smallest distance from the centre of rotation to the boundary). No motion is 
possible if 1) < 0.5 (hatched area). The available part of the ( w ,  e,)  plane can be divided 
into three different regions which are separated by full curves. In region I (-0.5 < 9 < 
-0 .5 /p2)  the motion is only possible in separated domains while in region I 1  ( -0.5/p2 < 7 < 
0) the trajectory is confined within a circle, with radius R , m ,  and the boundary. In 
region 111 (7 > 0) the motion is possible everywhere within the boundary. 

kinetic and rotational energy are equal is thus the landmark of two different regimes 
and we will see in the following that the organisation of phase space is complex around 
this value. For orbitals around the Fermi level in a fast rotating heavy nucleus we 
have 7 > 15. 

4. Trajectories in a rotating ellipse 

To understand the PoincarC surfaces of section in § 5 we will consider the trajectories 
in an ellipse rotating in the counterclockwise sense with constant rotational frequency. 
Let us first consider the periodic trajectory between the two apices of the ellipse (points 
where p = R , ) .  In the non-rotating case this trajectory is the bouncing ball motion 
along the long diameter of the ellipse. In figure 4 a part of the periodic trajectory is 
shown in the laboratory system. At t = 0 the two apices are located at P and P' with 
the particle placed at P. After an elapsed time t the long diameter PP' has rotated an 
angle 0 and the apices are then located at Q and 0'. If we want to find the particle 
at Q' the following condition must be fulfilled: 

V J R , w  = - ~ 0 ~ ( 0 / 2 ) / ( 0 / 2 )  (8) 



1770 H Frisk and R Arvieu 

Figure 4. The position of the apices of an ellipse are shown at two different times. The 
particle may travel from P to Q (periodic trajectory on a single apex) or from P to Q' 
(periodic trajectory connecting the two apices). 

remembering that both positive and negative values of VL are considered (see 0 2). 
Introducing this condition into the definition of 7 (7) gives 

7 =(1+cos  e) /e2+sin e /e .  (9) 

A periodic trajectory connected with a single apex is also possible if the self-intersection 
point of the loop (see the trajectory for VL/p ,w = 1.4 in figure 1) lies at p = R, .  In 
this case we want to find the particle at Q instead (see figure 4) and therefore 
V J R , w  = sin(e/2)/(6/2) must be used in (7) which gives 

7=(1 -cos  e) /e2-s ine/e .  (10) 

An example of this periodic motion is shown at the right of figure 6 ( c ) .  Just after the 
reflection with the boundary, the angle a between the velocity V ,  and the positive 
tangent of the ellipse (pointing in the counterclockwise sense) is given by 

( V , / R , U ) ~  - 2 7  - 2 
2 ( 1 + 2 7 p 2  

cos ff = 

This angle a will be used to define the Poincari surfaces of section in 0 5 .  The two 
functions in (9) and (10) are plotted in figure 5 where they are denoted by and 
7po, respectively. Obviously these equations provide only necessary but not sufficient 
conditions for the existence of the periodic trajectories since for p > 1 the particle will 
for suitable values of 6 hit the boundary before it reaches Q or Q' (the dotted parts 
of the curves in figure 5 correspond to this event for p = 1.25). The discussion above 
can be repeated for the corresponding periodic trajectories at p = R , ,  with some 
important differences, however. Obviously it is necessary to replace R ,  by R ,  and 
therefore the values of 7 given by (9) and (10) must be scaled. A periodic trajectory 
connected with the apex at the angle 8, or a, and for the value 7 will then be connected 
with the small axis at the same angle 8, or a, for a new value, v', given by T '=  7 / p 2 .  
These periodic trajectories cannot intersect the ellipse and they exist for all values of 
p and 8. In other words, the full curves represented in figure 5 which define 7' can 
be used. Thus the curve corresponding to 7", denoted 7&, extends now in the 
interval 7'> -0.18/p2 while the loop at p = R ,  is possible when -0 .50/p2< 7'< 
0.29/p2. The bouncing ball motion along the small (long) axis is stable (unstable) for 
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Figure 5. The curves labelled qpQ and qpQ are defined by equations (9)  and (lo), 
respectively, and give the set of 7 and 6 values for which the periodic trajectories between 
the apices of the ellipse and at a single apex (loop) are possible. However, there is a 
possibility that ihe particle will hit the boundary before it reaches the apex and the dotted 
parts of the curves show when this occurs for an ellipse with F = 1.25. The figure can also 
be used for the corresponding periodic trajectories at p = R ,  if the q values in the figure 
are scaled with a factor 1/p2. 

w =0 ,  while vPQ= -0.5 (7b= -0.5 /p2)  correspond to stable (unstable) points in 
phase space. Thus a shift of stability occurs from the short axis for large 7 to the 
apices for small 7. This rearrangement mainly takes place in the region - 0 . 1 8 / p 2  < 7 < 
0.29. 

In order to obtain an orbit with counterclockwise motion in the rotating frame it 
is necessary that the trajectory is made by parts of the loop; see e.g. V,/p,w = 1.4 in 
figure 1. In this case the angular momentum for the orbit in the laboratory system, I,, 
and in the rotating system is always positive ( l ,  o > 0). An example of counterclock- 
wise motion is given at the right of figure 6 ( a ) .  For 7 < 0 all orbits have 1, > 0 but 
consist of both clockwise and counterclockwise pieces; see figure 6( c ) .  We will see in 
0 5 that the counterclockwise motion is to a large extent ordered. Especially, the orbit 
travelling along the boundary of the ellipse in this sense exists for all values (see 
below). 

Compared to the counterclockwise motion, the clockwise motion is more complex 
since many possibilities exist. For examples of clockwise motion see figure 6 ( a )  (left 
and middle), parts of the trajectory of figure 6 ( b )  (chaotic) and figure 6 ( c )  (left). Let 
us now study the orbit travelling along the boundary in the clockwise sense. For a 
free particle with no boundary the radius of curvature, R,,  of the trajectory at the 
point p is given by 

vf 
2 w v r - w 7 p .  n )  

R, = 

where n denotes the outward normal of the trajectory. If the point defined by p is on 
the boundary a reaction is possible whenever R, is greater than the radius of curvature, 
Re ,  of the ellipse at p. Observe that for the counterclockwise motion along the boundary 
a reaction of the boundary is always possible. After using ( 7 )  to eliminate V, the 
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Figure 6. Trajectories in a rotating ellipse ( R ,  = 1.25 
and R ,  = 1). In ( a )  a typical clockwise trajectory 
(7 = 0.41) is shown to the left while the periodic 
trajectory along the short diameter (I) = 20) is shown 
in the middle and a typical counterclockwise motion 
(7 =0.41) is shown to the right. In ( 6 )  an example 
of a chaotic orbit (7 = 0) is given while in ( c )  trajec- 
tories in the confined region are shown (7 = -0.3) 
together with the confinement circle. The loop to 
the right belongs to the vlPQ family discussed in 
connection with figures 4 and 5. 

condition R,>  Re is expressed as 

At the points on the boundary where p * n > Re (or R,(1- l /p  + 1/p2)"2<p S R, )  
the condition is fulfilled for all values of q. If p n < Re the condition in (13) defines 
an interval in 77 in which the particle must fly away from the boundary at p. The lower 
bound of this interval is greater than -0.5(p/R,)2. The minimum and maximum of 
the lower and upper bounds, respectively, of the intervals where the condition in (13) 
is not fulfilled gives the domain where the clockwise motion along the boundary is 
not possible. This interval is given by 

77-<77<7+ 
q + =  - ( I  + 1 / p 2 ) / 2 + p 2 + p J p 2 -  1 

- (1+ 1 / p 2 ) / 2 + 4 / 3 J 5 p  
7 - = {  - (I  + 1 /p2) /2 i -  p 2 - p J p 2  - 1 

4q2R4, +4qR:[p2+ R,(p * n )  -2R:]+ [(p2+ R, (p  - n))*-4Rfp2]  > 0. (13) 

(14) 
if p > 2 / J 5  
ifp <2/& 

where 77+ > 0 and 7- < 0 for all values of p (e.g. for p = 1.25, v+ = 1.68 and 7- = -0.20). 
We will see in 0 5 that the clockwise motion is to a large extent chaotic for 7- < 77 < v+. 

5. Poincare surfaces of section 

It is a common practice to represent the phase space of a system with two degrees of 
freedom by its Poincari surface of section. For the surfaces of section we use the 
coordinate s/ L, where s is the arc length from a point with p = R, to the impact point 
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(in the counterclockwise sense) and where L is the total length of the boundary, and 
the angle LY which was defined in connection with equation ( 1 1 ) .  All information 
about the total surface of section is contained in the interval OSs/LsO0.25 due to 
symmetry. In the non-rotating case the surface of section is also symmetric with respect 
to cr = 7r/2 while no specific symmetry is associated with the angle LY in the rotating 
case since the time-reversal symmetry is broken. The orbits with cr = 0 and LY = 7r 
describe the counterclockwise and clockwise motion along the boundary, respectively. 
A condition for the existence of the orbit with cr = 7~ was given by equation (13 )  for 
the ellipse. We will in this section discuss in detail the rotating elliptical billiard but, 
at the end, also consider the rotating stadium. The PoincarC section contains three 
different parts in the non-rotating elliptical case, which can be classified by the sign 
of a constant of motion, namely the scalar product of the two angular momenta, Il 
and 1 2 ,  with respect to the two foci of the ellipse (Berry 1981a). When I ,  * 12<0 the 
particle is able to cross the interval between the foci, while for Il 1, > 0 it never crosses 
this interval. For I ,  l2 = 0 the orbit crosses the foci and this value defines the separatrix. 
The manifold with I ,  - I ,  > 0 is split into two disconnected submanifolds, occupying 
the same volume in phase space, corresponding to clockwise or counterclockwise 
motion around the foci. 

A set of PoincarC surfaces of section is presented in figure 7 for an aspect ratio 
p = 1.25. The surface of section for 7 = 20 is very similar to the surface in the 
non-rotating case and the phase space is still roughly organised into three regions. 
Around the separatrix which existed in the non-rotating case ( f l  * I 2  = 0) chaotic orbits 
now exist. With p = 1.25 in equation (14) we obtain that clockwise motion along the 
boundary is not possible if -0.20< 7 < 1.68. As seen in figure 7, a large part of the 
clockwise motion is chaotic for the 7 values in this region while the counterclockwise 
motion remains ordered. The invariant curves around s/ L = 0 , l  and 0.5, corresponding 
to orbits with I ,  * I 2  < 0 in the non-rotating case, have disappeared for 7 = 0.41 although 
the periodic trajectory connecting the points with p = R, can exist for 7 > -0.12 (see 
0 4). However, a new zone of stability appears for 7 = 0 which is made of two 
disconnected parts near s/ L = 0.25 and 0.75. The reason for this structure is the periodic 
trajectories that were described as the branch called vp0 in figure 5 (i.e. the loops at 
p = R,). These periodic orbits are present for 7 <0.29. The clockwise motion along 
the boundary is again possible for 7 = -0.3 ( p  = 0.97R,) and ordered motion appears 
in the upper part of the surface of section. For 7 = -0.4 two regions of confinement 
exist since p< = 1.12R, and the phase space is invaded by invariant curves. The phase 
space of an ellipse with p = 2 is dominated in the non-rotating case by the orbits with 
I ,  l2 < 0 (Arvieu and Ayant 1987a, b). As seen in figure 7 ,  these invariant curves are 
replaced by chaotic dots in an interval around 7 = 0 and therefore we expect that the 
chaotic motion is more dominant for p = 2. This can also be seen in figure 8 for 
7 =0.88 and 7 = -0.14 (p<  = 1.06R,). However, for 7 = -0.42 ( p <  = 1.83R,), which 
is smaller than 7- = -0.24, the invariant curves occupy the phase space. 

We have also considered the case of a rotating stadium which is known to be 
completely chaotic in the non-rotating case (Berry 1981a). We present here the stadium 
for an aspect ratio p = R,/ R, = 1.25. As seen in figure 9 invariant curves are obtained 
when 7 decreases. Most impressively the size of the chaotic area decreases with 7. 
For 7 = -0.14 ( p <  = 0.66R,) the system has the same phase space organisation as the 
elliptical billiard with the loops at s/ L = 0.25 and 0.75. For 7 = -0.42 ( p ,  = 1.15R,) 
only invariant curves exist. For such a low value the circle of confinement crosses the 
boundary at a point where the latter is a circle and the particle is confined between 
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Figure 7. Poincare surfaces of section of the rotating ellipse with R, = 1.25 and R ,  = 1 
for different values of the parameter 7 as defined in equation (7). The two coordinates 
s/ L and a are defined in 9 5 and equation ( 1  l ) ,  respectively. To generate the surfaces 22 
different orbits were considered and each orbit was iterated 400 times. The non-rotating 
ellipse is integrable. In the rotating case the occurrence of chaotic orbits is only dominant 
for the clockwise motion (upper part of the figures). Observe the change of stability from 
the short axis, s / L =  0, 1 and 0.5, for 7 = 2.25, to the long axis, s/L=O.25 and 0.75, for 
7 = 0.0. 
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Figure 7. (continued) 

two circles. This region is very similar to the corresponding region for the ellipse and 
explains why the two phase spaces become so similar when 7 is very low. 

6. Discussion and conclusion 

In summary, we have demonstrated by numerical methods that our rotating billiard 
is generic within the limits 77 +CO and 7 = -0.5 where the phase space is reduced to 
two points. The organisation of phase space for the billiards in a Coriolis-centrifugal 
field and a constant magnetic field is found to be similar for weak fields but different 
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Figure 8. Same as figure 7 but for R, = 2 and R ,  = 1. The chaotic region is dominant for 
q = 0.88 and q = -0.14. However, the phase space organisation for q = -0.42 is similar 
to that for q = -0.4 in figure 7.  

for strong fields. Chaos occurs in both systems when motion ‘against’ the rotation or 
the magnetic field along the boundary is impossible. Moreover, the stable counterclock- 
wise motion is the counterpart to the adiabatic skipping motion discussed by Robnik 
and Berry. The removal of the zone of stability in the elliptical billiard is connected 
with the disappearance of the periodic motion along the short diameter together with 
the appearance of the stable loops at the apices. 
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Figure 9. Same as figure 7 but for a rotating stadium with R ,  = 1.25 and R ,  = 1.0. The 
stadium is completely chaotic in the non-rotating case but when 7 decreases islands are 
created and the PoincarC surfaces for 7 = -0.14 and -0.42 are very similar to the surfaces 
for the rotating ellipse with the same axis ratio. Observe that for 7 = -0.42 the rotating 
stadium seems to be integrable. 

From nearest-neighbour spacings of eigenenergies and A, statistics it has been 
claimed recently that the rotational motion is regular and has a stabilising effect on 
the particle motion (Abul-Magd and Weidenmuller 1985, Paar and VorkapiC 1988). 
Since 77 > 15 for the orbitals which contribute significantly to the angular momentum 
in a rotating nucleus we expect from our work that the rotational motion has only a 
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minor influence on the organisation of phase space. However, when 7 + -0.5 the 
stabilising effect is nicely demonstrated in figures 7-9. It is known that a realistic 
deformed potential has chaotic orbits for w = 0 (Arvieu et al 1987). How the rotational 
motion will influence the three-dimensional case is not clear. Another interesting 
question concerns how the regular and chaotic motions influence the moment of inertia. 
Work on these questions is in progress. 
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